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Dynamic Systems Modelling: Differential
Equations

* Dynamic numerical models often make use
of differential equations, for example;

y=3x"+2 d—y=6x jy=x3+2x+c
dx

* A simple model may look something like this;

dv
M t_F A'OACdV

How does velocity change over time, if you apply constant engine torque (and hence F in the

model above) to a car ? What are the initial and final values of % and v ?
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Modelling Example 1

* Equations;

resting level

. . . 1
(equilibrium) Equivalent Spring stiffness; — =

_|_

1,1
KS Kt

l zp(t)

ks = K(Zb —z,) + 35(21, — Zr)

XF = ma

Zy

M3, = K(z, — 2p) + Bs(2r — 2)

Sign convention: +ve
direction indicated (1)

by arrow heads
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Modelling Example 1

* To find a solution we need to express the Equation (1) as
a system of first order equations by choosing the system
‘states’ correctly. Note that this is an arbitrary definition
and many other choices are possible.

X1 = Zp
x2=2b
X3 = Zy
u =2z,

* Making the substitutions into Equation (1)

Mx, = K(x3 —x1) + Bs(u — x5)
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Modelling Example 1

* Rearranging in terms of the states, x4, x, and x3;

X1 = X

. By

X2 =M(x3 —x1)+ﬁ(u—x2)
X3=u

* An alternative representation using x; = z,- — 7, i.e. new definition of
X1.

561=u—x2

. K B
Xy = —Xq +M

M (u—x3)
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Modelling Example 2

mass (M)

Iy
T stiffness (K)
Zu(t) — =

AN

Looking back at the previous example and notes
make sure you can obtain the following system
equations;

X1 = X3
. K B
X2 = M(T —X1) = M X2
Or (when not in contact with ground);
X1 = X2
X2 =—(g

with states defined as follows;
X1 = Zp and X, = z,
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Modelling Example 2

* From Simulink help open the
bouncing ball model

* Familiarize yourself with the
model implementation.

* Try changing the initial
conditions and see how the
model behavior changes.
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Numerical Integration of ODE’s
x() = f(x(2),u(?))

* We often need to find
the definite integral of
some function
(solution).

b
x(t) =f x (t)
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Numerical Integration of ODE’s

Euler’s method

. . x(t) x(t)
e Euler's forward method is a numerical

integration technique that enablesusto |
do this. Pt

* x(t + h) is evaluated using the gradient
at t.

* his the step size (small).
* Limitations;
e Accuracy improved by reducing h i.e. the
step size.

e Large h can result in low accuracy and x(t+h)=x(t)+hx(¢)
numerical instability.

* Errors O(h?)

x(2) = f(x(2),u(?))

What is the consequence of reducing the

i%_ Loughborough
size of h on the calculation? p University




Numerical Integration of ODE’s
Midpoint method

x(t) N x(

* The midpoint method
evaluates x(t + h) using .
the gradientatt + h/2 o

* Errors O(h?)

Value of ky = hf (x(2), u(?))
function at
o B Cx(0) + [+ 1/2))

X(t+h)=x(t)+k, +

Value of input at

h/2 &1 M Loughborough
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Numerical Integration of ODE’s

Runge-Kutta 4t" order X(0)
* RK4 evaluates x(t + h) using the &
gradient at t, ¢ + h and two L
estimates att + h/2
« O(h°) B A
* RK4 is the most used fixed step k= W (0, u(0)
solver ks = W (x(6)+ K, /2, u(t+h/2))

ky=hf(x(t)+k,/2, u(t+h/2))
k,=hf(x(¢)+ks, u(t+h))

k., k, k. k
t+h)=x(O)+=L+=2+=+=4+0(I
x(t+h)=x(t) e 373t (n”)

Loughborough
¥ University




Numerical Integration of ODE’s

 Compare the results on the right e

for the three different integration ol 3 Mg |

algorithms. 002

0015 F

001}
0005} & 7

-0.005 |

-0.01

-0.015 +

-0.02

In what circumstance would one opt for a

lower accuracy method?
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Numerical Integration of ODE’s

* Fixed and variable step
‘solvers’ are the two main
categories.

 Variable step solvers change
the step size during the
solution.

* Example: bouncing ball. It is
not always obvious what the
solution is going to look like.

* Fixed step solvers are required
for real time simulation.
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