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Overview
• Differential equations

• Model generation examples

• Numerical integration



Dynamic Systems Modelling: Differential 
Equations
• Dynamic numerical models often make use 

of differential equations, for example;

• A simple model may look something like this;
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Section 2a :  Modelling and Simulation : 
Differential Equations  

What is a differential equation and how does it relate to the real 
world ? 
We know about ‘differentiation’, and ‘integration’ in equations.  Eg : 

23y x � 2   6dy x
dx

   3 2y x x c � �³  

These are what we call analytical functions – where the answer is itself an equation, and you 

can plug in numerical values for x to give the required value for y, dy
dx

 or y³ .  The dynamic 

behaviour of systems is related using differentiation and integration (with respect to time), but 
the relationships are more like : 

21
2 d

dvM F AC
dt

U � v     (i) 

ie, with the derivative of the value dependent on the value itself.  This equation shows a good 
example – a simplified model of the longitudinal (that’s ‘forwards’ !) dynamics of a car.  F is 
the drive force at the wheels, and v is the forward velocity.  The second term on the right hand 
side represents aerodynamic losses, and M, U , A and Cd are (constant) parameters. 

How does velocity change over time, if you apply constant engine torque (and hence F in the 

model above) to a car ?  What are the initial and final values of  dv
dt

 and v ? 

 
In dynamic simulation, because the dependent variable is (nearly) always time, t, we use the 

notation  in place of v� dv
dt

.  So, in straight line vehicle acceleration, if position is x, velocity is 

v and acceleration is a, we have : 

v x �   and   a v x  � ��  

Although we can solve equation (i) analytically, the solution will only be valid for a fixed 
(input) force F, or if F can be replaced by some other (analytical) function of time.  And it will 
give us just one ‘result’. 

In simulation, we want to generate time histories – a trace of how the variable changes over 
time – as for the ‘blue-box’ question above.  To do this, and allow for maximum flexibility in 
specifying F, we use numerical integration, rather than analytical solution. 

Important notation : 

variable : Something which changes over time, and which we could find a time history for. 

parameter : A constant, which is needed within the model, but which we might vary for 
separate simulation runs (eg suspension spring stiffness – we might vary this to do a design 
study). 
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Modelling Example 1

• Equations;

Equivalent Spring stiffness; !
"
= !

"!
+ !
""

𝐹! = 𝐾 𝑧" − 𝑧# + 𝐵!(𝑧
.
" − 𝑧

.
#)

Σ𝐹 = 𝑚𝑎

−𝐹! = 𝑀𝑧̈"
𝑀𝑧̈" = 𝐾 𝑧# − 𝑧" + 𝐵!(𝑧

.
# − 𝑧

.
")
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Generation of differential equations (simple examples) 
Dynamic models are described in terms of a series of differential equations which can always 
be reduced to a set of first order differential equations.  Two examples which we will refer to 
in these notes are the simplified single degree-of-freedom suspension model, and the bouncing 
ball model (shown below).  Note that the ‘simplification’ stage of model design has already 
been completed for these cases – the former being reduced to a rigid mass suspended over a 
point which is fixed on the ‘road’ by a simple spring and viscous damper (and which moves 
only vertically); the latter switches between contact and non-contact conditions. 

resting level 
(equilibrium)   M

zb(t) 
 Ks mass (M) B

stiffness (K)  Kt r

zb(t) 

zr(t) 

Figure 1 : Suspension (body bounce), and bouncing ball models 
 

 

(Body bounce) suspension model 

� � � �

1 1 1

s t

s b r s b r

K K K
F K z z B z z

 �

 � � �� �

 

s b

F ma
F Mz

 

�  
¦

��
 

 � � � �b r b s r bMz K z z B z z � � ��� � �  (1) 

Aside : A quick note on sign conventions 
I have drawn the direction I am taking as positive for forces and deflections in the diagrams above 
(velocities and accels will obviously take the same signs as the deflections).  Provided I then write 
the equations to be consistent with these (note how Fs depends on ) it doesn’t matter 
which direction I take as positive.  For example, if forces Fs were drawn with arrows into the centre 
(pulling up on the ‘road’ and down on the body) I would have to write the equations as 

, , ,b r b rz z z z� �
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Sign convention: +ve
direction indicated

by arrow heads
(1)



Modelling Example 1
• To find a solution we need to express the Equation (1) as 

a system of first order equations by choosing the system 
‘states’ correctly. Note that this is an arbitrary definition 
and many other choices are possible.

𝑥! = 𝑧#
𝑥$ = 𝑧̇#
𝑥% = 𝑧&
𝑢 = 𝑧̇&

• Making the substitutions into Equation (1)

𝑀𝑥̇$ = 𝐾 𝑥% − 𝑥! + 𝐵'(𝑢 − 𝑥$)



Modelling Example 1
• Rearranging in terms of the states, 𝑥!, 𝑥" and 𝑥#;

𝑥̇! = 𝑥"

𝑥̇" =
𝐾
𝑀 𝑥# − 𝑥! +

𝐵$
𝑀 (𝑢 − 𝑥")

𝑥̇# = 𝑢

• An alternative representation using 𝑥! = 𝑧% − 𝑧& i.e. new definition of 
𝑥!.

𝑥̇! = 𝑢 − 𝑥"

𝑥̇" =
𝐾
𝑀𝑥! +

𝐵$
𝑀 (𝑢 − 𝑥")



Modelling Example 2
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Looking back at the previous example and notes 
make sure you can obtain the following system 
equations;

𝑥̇! = 𝑥$

𝑥̇$ =
𝐾
𝑀

𝑟 − 𝑥! −
𝐵
𝑀
𝑥$

Or (when not in contact with ground);
𝑥̇! = 𝑥$
𝑥̇$ = −𝑔

with states defined as follows;
𝑥! = 𝑧# and x$ = 𝑧̇#



Modelling Example 2

• From Simulink help open the 
bouncing ball model
• Familiarize yourself with the 

model implementation.
• Try changing the initial 

conditions and see how the 
model behavior changes.



Numerical Integration of ODE’s

• We often need to find 
the definite integral of 
some function 
(solution).
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Section 2b :  Numerical Integration of Ordinary 
Differential Equations (ODEs)  

 
The simplest method for integrating a set of differential equations 

( ) ( ( ), ( ))x t f x t u t �  

is the Euler method, which is illustrated in Figure 2(a) : 

 ( ) ( ) ( )x t h x t hx t�  � �  (6) 

where h is a small step in time (Gt). 

This method is quite crude, because the time derivatives ( )x t�  continuously vary over time, yet 
we are assuming they are constant for the ‘small’ step h.   

Euler is too simple because : 

(i) Accuracy can only be ensured by choosing a ‘small enough’ step size, and thus 
imposing a large number of function evaluations on the simulation. 

(ii) If h is too large, the solution can become unstable as well as inaccurate, with 
progressively larger values of x being predicted. 

(iii) The absolute level of accuracy is determined by the model (how rapidly ( )x t�  varies 
and whether it includes ‘sharp’ (switching) nonlinearities, like in the bouncing ball) 
so it is hard to guarantee a given level of precision. 

 
Figure 2 : Time schematic for function evaluations under various integration methods 

 

Figure 2(b) shows a better method, the midpoint method or ‘Runge Kutta second order’.  
Intuitively, if you find the gradient half way along a step, and use this instead of the gradient at 
the start, you’ll get a better estimate of the ‘average’ behaviour over the time interval : 

t1 t2 t3 

x(t) 

t1 t2 t3 

x(t) x(t) 

4 

2 

3 
1 

t1 t2 

(c) : RK4 method (a) : Euler method (b) : Midpoint (RK2) method 

State estimate Function evaluation 
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𝑥 𝑡 = 1
%

"
𝑥
.
𝑡



Numerical Integration of ODE’s 
Euler’s method

• Euler's forward method is a numerical 
integration technique that enables us to 
do this.
• 𝑥(𝑡 + ℎ) is evaluated using the gradient 

at 𝑡.
• ℎ is the step size (small).
• Limitations;

• Accuracy improved by reducing ℎ i.e. the 
step size.

• Large ℎ can result in low accuracy and 
numerical instability.

• Errors 𝒪(ℎ")
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t1 t2 t3 

x(t) 

t1 t2 t3 

x(t) x(t) 

4 

2 

3 
1 

t1 t2 
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State estimate Function evaluation 
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t1 t2 t3 

x(t) 

t1 t2 t3 

x(t) x(t) 

4 

2 

3 
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(c) : RK4 method (a) : Euler method (b) : Midpoint (RK2) method 

State estimate Function evaluation 
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What is the consequence of reducing the 
size of h on the calculation?



Numerical Integration of ODE’s
Midpoint method

• The midpoint method 
evaluates 𝑥(𝑡 + ℎ) using 
the gradient at 𝑡 + ℎ/2
• Errors 𝒪(ℎ&)
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1

2 1
3

2

( ( ),  ( ))
( ( ) 2,  ( 2))

( ) ( ) ( )

k hf x t u t
k hf x t k u t h

x t h x t k h

 
 � �

�  � �2

 (7) 

The ‘O(h3)’ bit means ‘errors of order h3’.  Essentially, the Euler method uses one function 
( ( ( ), ( ))f x t u t ) evaluation and is accurate to order h2, the midpoint method uses two (hence 
second order), and is accurate to O(h3) etc. 

By far the most often used is the fourth order Runge Kutta formula (RK4), which is illustrate 
in figure 2(c) and is calculated as : 

 

1

2 1

3 2

4 3

51 2 3 4

( ( ),  ( ))
( ( ) 2,  ( 2))
( ( ) 2,  ( 2))
( ( ) ,  ( ))

( ) ( ) (
6 3 3 6

k hf x t u t
k hf x t k u t h
k hf x t k u t h
k hf x t k u t h

k k k k )x t h x t h

 
 � �
 � �
 � �

�  � � � � �2

 (8) 

This method involves four function evaluations; one at the start, two in the centre and one at 
the end of the step, and it uses a weighted aggregate to provide the best estimate of the states at 
t+h. 

The Runge Kutta methods are better than Euler, because they include ‘autocorrection’ within a 
single time step, hence one RK4 step of length h will be more accurate that four Euler steps of 
length h/4.   

The graph on the right 
illustrates this.  It shows a 
section of simulations of the 
suspension model, settling 
from an initial deflection o
body. 

f the 

The ‘true states’ were 
calculated using RK4 with a 
step length of 0.001.  RK4, 
midpoint and euler methods 
were then tested with equal 
numbers of function 
evaluations (RK4 h=0.1, 
Midpoint h=0.05 and Euler 
h=0.025) 

 

Figure 3 : A ‘fair’ comparison between integration methods 

 

How do we know what step length we need to achieve a particular level of accuracy though?  
In general, it isn’t appropriate to fix h, and the plot below shows why.  The bouncing ball 
model has a ‘sharp’ nonlinearity – the model changes suddenly when the ball contacts the 
floor.  In the figure, Simulink has been used to give an ‘accurate’ simulation of the motion of 
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Value of 
function at 

h/2

Value of input at 
h/2



Numerical Integration of ODE’s
Runge-Kutta 4th order

• RK4 evaluates 𝑥(𝑡 + ℎ) using the 
gradient at t, 𝑡 + ℎ and two 
estimates at 𝑡 + ℎ/2 
• 𝒪(ℎ')
• RK4 is the most used fixed step 

solver
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By far the most often used is the fourth order Runge Kutta formula (RK4), which is illustrate 
in figure 2(c) and is calculated as : 
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This method involves four function evaluations; one at the start, two in the centre and one at 
the end of the step, and it uses a weighted aggregate to provide the best estimate of the states at 
t+h. 

The Runge Kutta methods are better than Euler, because they include ‘autocorrection’ within a 
single time step, hence one RK4 step of length h will be more accurate that four Euler steps of 
length h/4.   

The graph on the right 
illustrates this.  It shows a 
section of simulations of the 
suspension model, settling 
from an initial deflection o
body. 

f the 

The ‘true states’ were 
calculated using RK4 with a 
step length of 0.001.  RK4, 
midpoint and euler methods 
were then tested with equal 
numbers of function 
evaluations (RK4 h=0.1, 
Midpoint h=0.05 and Euler 
h=0.025) 

 

Figure 3 : A ‘fair’ comparison between integration methods 

 

How do we know what step length we need to achieve a particular level of accuracy though?  
In general, it isn’t appropriate to fix h, and the plot below shows why.  The bouncing ball 
model has a ‘sharp’ nonlinearity – the model changes suddenly when the ball contacts the 
floor.  In the figure, Simulink has been used to give an ‘accurate’ simulation of the motion of 
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• Compare the results on the right 
for the three different integration 
algorithms.

In what circumstance would one opt for a 
lower accuracy method? 



Numerical Integration of ODE’s

• Fixed and variable step 
‘solvers’ are the two main 
categories.
• Variable step solvers change 

the step size during the 
solution.
• Example: bouncing ball. It is 

not always obvious what the 
solution is going to look like.
• Fixed step solvers are required 

for real time simulation.
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the ball after it is released from rest at a height of one metre.  The top plot shows vertical 
height (m) against time, the bottom shows speed (m/s).  One dot is given per timestep taken – 
note that the step length is significantly shortened during the time when the model is switching 
between contact and non-contact conditions.  The other traces are given by fixed step-length 
RK4 simulations.   

For RK4, h=0.1, the time step between function evaluations is too long – the integrator models 
the ball as in freefall ‘just before’ it hits the ground, then at the next function evaluation the 
ball has ‘fallen through the floor’, so immediately has a very high spring force applied – this 
explains the subsequent motion, where the ball flies off into the air at great speed (this is 
slightly unrealistic behaviour).  I chose the second case, h=0.03 because for most of the 
simulation this is the step length the Simulink integrator uses.  Similar problems occur again; 
although it’s not as severe, clearly this model is incorrect, as again the simulation shows the 
ball gaining energy. 

 

 
Figure 4 : The ball bounce model uses varying step-length to guarantee accuracy. 

 

It is clear from this example that, however the model is structured, it is essential we have 
control over the accuracy we are getting.  This means integrators have to include an algorithm 
which automatically adapts the step lengths taken.  

Adaptive step size control 
“A good ODE integrator should exert some adaptive control over its own progress, making 
frequent changes in its stepsize.  Usually the purpose of this adaptive stepsize control is to 
achieve some predetermined accuracy in the solution with minimum computational effort.  
Many small steps should tiptoe through treacherous terrain, while a few great strides should 
speed through smooth uninteresting countryside.  The resulting gains in efficiency are not 
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