
Vehicle Dynamics and Simulation

Dr B Mason

Differential Equations and Numerical
Integration

Overview
• Differential equations

• Model generation examples

• Numerical integration

Dynamic Systems Modelling: Differential
Equations
• Dynamic numerical models often make use

of differential equations, for example;

• A simple model may look something like this;

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Section 2a : Modelling and Simulation :
Differential Equations

What is a differential equation and how does it relate to the real
world ?
We know about ‘differentiation’, and ‘integration’ in equations. Eg :

23y x � 2 6dy x
dx

 3 2y x x c � �³

These are what we call analytical functions – where the answer is itself an equation, and you

can plug in numerical values for x to give the required value for y, dy
dx

 or y³ . The dynamic

behaviour of systems is related using differentiation and integration (with respect to time), but
the relationships are more like :

21
2 d

dvM F AC
dt

U � v (i)

ie, with the derivative of the value dependent on the value itself. This equation shows a good
example – a simplified model of the longitudinal (that’s ‘forwards’ !) dynamics of a car. F is
the drive force at the wheels, and v is the forward velocity. The second term on the right hand
side represents aerodynamic losses, and M, U , A and Cd are (constant) parameters.

How does velocity change over time, if you apply constant engine torque (and hence F in the

model above) to a car ? What are the initial and final values of dv
dt

 and v ?

In dynamic simulation, because the dependent variable is (nearly) always time, t, we use the

notation in place of v� dv
dt

. So, in straight line vehicle acceleration, if position is x, velocity is

v and acceleration is a, we have :

v x � and a v x � ��

Although we can solve equation (i) analytically, the solution will only be valid for a fixed
(input) force F, or if F can be replaced by some other (analytical) function of time. And it will
give us just one ‘result’.

In simulation, we want to generate time histories – a trace of how the variable changes over
time – as for the ‘blue-box’ question above. To do this, and allow for maximum flexibility in
specifying F, we use numerical integration, rather than analytical solution.

Important notation :

variable : Something which changes over time, and which we could find a time history for.

parameter : A constant, which is needed within the model, but which we might vary for
separate simulation runs (eg suspension spring stiffness – we might vary this to do a design
study).

- 5 -

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Section 2a : Modelling and Simulation :
Differential Equations

What is a differential equation and how does it relate to the real
world ?
We know about ‘differentiation’, and ‘integration’ in equations. Eg :

23y x � 2 6dy x
dx

 3 2y x x c � �³

These are what we call analytical functions – where the answer is itself an equation, and you

can plug in numerical values for x to give the required value for y, dy
dx

 or y³ . The dynamic

behaviour of systems is related using differentiation and integration (with respect to time), but
the relationships are more like :

21
2 d

dvM F AC
dt

U � v (i)

ie, with the derivative of the value dependent on the value itself. This equation shows a good
example – a simplified model of the longitudinal (that’s ‘forwards’ !) dynamics of a car. F is
the drive force at the wheels, and v is the forward velocity. The second term on the right hand
side represents aerodynamic losses, and M, U , A and Cd are (constant) parameters.

How does velocity change over time, if you apply constant engine torque (and hence F in the

model above) to a car ? What are the initial and final values of dv
dt

 and v ?

In dynamic simulation, because the dependent variable is (nearly) always time, t, we use the

notation in place of v� dv
dt

. So, in straight line vehicle acceleration, if position is x, velocity is

v and acceleration is a, we have :

v x � and a v x � ��

Although we can solve equation (i) analytically, the solution will only be valid for a fixed
(input) force F, or if F can be replaced by some other (analytical) function of time. And it will
give us just one ‘result’.

In simulation, we want to generate time histories – a trace of how the variable changes over
time – as for the ‘blue-box’ question above. To do this, and allow for maximum flexibility in
specifying F, we use numerical integration, rather than analytical solution.

Important notation :

variable : Something which changes over time, and which we could find a time history for.

parameter : A constant, which is needed within the model, but which we might vary for
separate simulation runs (eg suspension spring stiffness – we might vary this to do a design
study).

- 5 -

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Section 2a : Modelling and Simulation :
Differential Equations

What is a differential equation and how does it relate to the real
world ?
We know about ‘differentiation’, and ‘integration’ in equations. Eg :

23y x � 2 6dy x
dx

 3 2y x x c � �³

These are what we call analytical functions – where the answer is itself an equation, and you

can plug in numerical values for x to give the required value for y, dy
dx

 or y³ . The dynamic

behaviour of systems is related using differentiation and integration (with respect to time), but
the relationships are more like :

21
2 d

dvM F AC
dt

U � v (i)

ie, with the derivative of the value dependent on the value itself. This equation shows a good
example – a simplified model of the longitudinal (that’s ‘forwards’ !) dynamics of a car. F is
the drive force at the wheels, and v is the forward velocity. The second term on the right hand
side represents aerodynamic losses, and M, U , A and Cd are (constant) parameters.

How does velocity change over time, if you apply constant engine torque (and hence F in the

model above) to a car ? What are the initial and final values of dv
dt

 and v ?

In dynamic simulation, because the dependent variable is (nearly) always time, t, we use the

notation in place of v� dv
dt

. So, in straight line vehicle acceleration, if position is x, velocity is

v and acceleration is a, we have :

v x � and a v x � ��

Although we can solve equation (i) analytically, the solution will only be valid for a fixed
(input) force F, or if F can be replaced by some other (analytical) function of time. And it will
give us just one ‘result’.

In simulation, we want to generate time histories – a trace of how the variable changes over
time – as for the ‘blue-box’ question above. To do this, and allow for maximum flexibility in
specifying F, we use numerical integration, rather than analytical solution.

Important notation :

variable : Something which changes over time, and which we could find a time history for.

parameter : A constant, which is needed within the model, but which we might vary for
separate simulation runs (eg suspension spring stiffness – we might vary this to do a design
study).

- 5 -

Modelling Example 1

• Equations;

Equivalent Spring stiffness; !
"
= !

"!
+ !
""

𝐹! = 𝐾 𝑧" − 𝑧# + 𝐵!(𝑧
.
" − 𝑧

.
#)

Σ𝐹 = 𝑚𝑎

−𝐹! = 𝑀𝑧̈"
𝑀𝑧̈" = 𝐾 𝑧# − 𝑧" + 𝐵!(𝑧

.
− 𝑧

.
")

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Generation of differential equations (simple examples)
Dynamic models are described in terms of a series of differential equations which can always
be reduced to a set of first order differential equations. Two examples which we will refer to
in these notes are the simplified single degree-of-freedom suspension model, and the bouncing
ball model (shown below). Note that the ‘simplification’ stage of model design has already
been completed for these cases – the former being reduced to a rigid mass suspended over a
point which is fixed on the ‘road’ by a simple spring and viscous damper (and which moves
only vertically); the latter switches between contact and non-contact conditions.

resting level
(equilibrium) M

zb(t)
 Ks mass (M) B

stiffness (K) Kt r

zb(t)

zr(t)

Figure 1 : Suspension (body bounce), and bouncing ball models

(Body bounce) suspension model

� � � �

1 1 1

s t

s b r s b r

K K K
F K z z B z z

 �

 � � �� �

s b

F ma
F Mz

�
¦

��

 � � � �b r b s r bMz K z z B z z � � ��� � � (1)

Aside : A quick note on sign conventions
I have drawn the direction I am taking as positive for forces and deflections in the diagrams above
(velocities and accels will obviously take the same signs as the deflections). Provided I then write
the equations to be consistent with these (note how Fs depends on) it doesn’t matter
which direction I take as positive. For example, if forces Fs were drawn with arrows into the centre
(pulling up on the ‘road’ and down on the body) I would have to write the equations as

, , ,b r b rz z z z� �

- 6 -

Sign convention: +ve
direction indicated

by arrow heads
(1)

Modelling Example 1
• To find a solution we need to express the Equation (1) as

a system of first order equations by choosing the system
‘states’ correctly. Note that this is an arbitrary definition
and many other choices are possible.

𝑥! = 𝑧#
𝑥$ = 𝑧̇#
𝑥% = 𝑧&
𝑢 = 𝑧̇&

• Making the substitutions into Equation (1)

𝑀𝑥̇$ = 𝐾 𝑥% − 𝑥! + 𝐵'(𝑢 − 𝑥$)

Modelling Example 1
• Rearranging in terms of the states, 𝑥!, 𝑥" and 𝑥#;

𝑥̇! = 𝑥"

𝑥̇" =
𝐾
𝑀 𝑥# − 𝑥! +

𝐵$
𝑀 (𝑢 − 𝑥")

𝑥̇# = 𝑢

• An alternative representation using 𝑥! = 𝑧% − 𝑧& i.e. new definition of
𝑥!.

𝑥̇! = 𝑢 − 𝑥"

𝑥̇" =
𝐾
𝑀𝑥! +

𝐵$
𝑀 (𝑢 − 𝑥")

Modelling Example 2

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Generation of differential equations (simple examples)
Dynamic models are described in terms of a series of differential equations which can always
be reduced to a set of first order differential equations. Two examples which we will refer to
in these notes are the simplified single degree-of-freedom suspension model, and the bouncing
ball model (shown below). Note that the ‘simplification’ stage of model design has already
been completed for these cases – the former being reduced to a rigid mass suspended over a
point which is fixed on the ‘road’ by a simple spring and viscous damper (and which moves
only vertically); the latter switches between contact and non-contact conditions.

resting level
(equilibrium) M

zb(t)
 Ks mass (M) B

stiffness (K) Kt r

zb(t)

zr(t)

Figure 1 : Suspension (body bounce), and bouncing ball models

(Body bounce) suspension model

� � � �

1 1 1

s t

s b r s b r

K K K
F K z z B z z

 �

 � � �� �

s b

F ma
F Mz

�
¦

��

 � � � �b r b s r bMz K z z B z z � � ��� � � (1)

Aside : A quick note on sign conventions
I have drawn the direction I am taking as positive for forces and deflections in the diagrams above
(velocities and accels will obviously take the same signs as the deflections). Provided I then write
the equations to be consistent with these (note how Fs depends on) it doesn’t matter
which direction I take as positive. For example, if forces Fs were drawn with arrows into the centre
(pulling up on the ‘road’ and down on the body) I would have to write the equations as

, , ,b r b rz z z z� �

- 6 -

Looking back at the previous example and notes
make sure you can obtain the following system
equations;

𝑥̇! = 𝑥$

𝑥̇$ =
𝐾
𝑀

𝑟 − 𝑥! −
𝐵
𝑀
𝑥$

Or (when not in contact with ground);
𝑥̇! = 𝑥$
𝑥̇$ = −𝑔

with states defined as follows;
𝑥! = 𝑧# and x$ = 𝑧̇#

Modelling Example 2

• From Simulink help open the
bouncing ball model
• Familiarize yourself with the

model implementation.
• Try changing the initial

conditions and see how the
model behavior changes.

Numerical Integration of ODE’s

• We often need to find
the definite integral of
some function
(solution).

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Section 2b : Numerical Integration of Ordinary
Differential Equations (ODEs)

The simplest method for integrating a set of differential equations

() ((), ())x t f x t u t �

is the Euler method, which is illustrated in Figure 2(a) :

 () () ()x t h x t hx t� � � (6)

where h is a small step in time (Gt).

This method is quite crude, because the time derivatives ()x t� continuously vary over time, yet
we are assuming they are constant for the ‘small’ step h.

Euler is too simple because :

(i) Accuracy can only be ensured by choosing a ‘small enough’ step size, and thus
imposing a large number of function evaluations on the simulation.

(ii) If h is too large, the solution can become unstable as well as inaccurate, with
progressively larger values of x being predicted.

(iii) The absolute level of accuracy is determined by the model (how rapidly ()x t� varies
and whether it includes ‘sharp’ (switching) nonlinearities, like in the bouncing ball)
so it is hard to guarantee a given level of precision.

Figure 2 : Time schematic for function evaluations under various integration methods

Figure 2(b) shows a better method, the midpoint method or ‘Runge Kutta second order’.
Intuitively, if you find the gradient half way along a step, and use this instead of the gradient at
the start, you’ll get a better estimate of the ‘average’ behaviour over the time interval :

t1 t2 t3

x(t)

t1 t2 t3

x(t) x(t)

4

2

3
1

t1 t2

(c) : RK4 method (a) : Euler method (b) : Midpoint (RK2) method

State estimate Function evaluation

- 9 -

𝑥 𝑡 = 1
%

"
𝑥
.
𝑡

Numerical Integration of ODE’s
Euler’s method

• Euler's forward method is a numerical
integration technique that enables us to
do this.
• 𝑥(𝑡 + ℎ) is evaluated using the gradient

at 𝑡.
• ℎ is the step size (small).
• Limitations;

• Accuracy improved by reducing ℎ i.e. the
step size.

• Large ℎ can result in low accuracy and
numerical instability.

• Errors 𝒪(ℎ")

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Section 2b : Numerical Integration of Ordinary
Differential Equations (ODEs)

The simplest method for integrating a set of differential equations

() ((), ())x t f x t u t �

is the Euler method, which is illustrated in Figure 2(a) :

 () () ()x t h x t hx t� � � (6)

where h is a small step in time (Gt).

This method is quite crude, because the time derivatives ()x t� continuously vary over time, yet
we are assuming they are constant for the ‘small’ step h.

Euler is too simple because :

(i) Accuracy can only be ensured by choosing a ‘small enough’ step size, and thus
imposing a large number of function evaluations on the simulation.

(ii) If h is too large, the solution can become unstable as well as inaccurate, with
progressively larger values of x being predicted.

(iii) The absolute level of accuracy is determined by the model (how rapidly ()x t� varies
and whether it includes ‘sharp’ (switching) nonlinearities, like in the bouncing ball)
so it is hard to guarantee a given level of precision.

Figure 2 : Time schematic for function evaluations under various integration methods

Figure 2(b) shows a better method, the midpoint method or ‘Runge Kutta second order’.
Intuitively, if you find the gradient half way along a step, and use this instead of the gradient at
the start, you’ll get a better estimate of the ‘average’ behaviour over the time interval :

t1 t2 t3

x(t)

t1 t2 t3

x(t) x(t)

4

2

3
1

t1 t2

(c) : RK4 method (a) : Euler method (b) : Midpoint (RK2) method

State estimate Function evaluation

- 9 -

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Section 2b : Numerical Integration of Ordinary
Differential Equations (ODEs)

The simplest method for integrating a set of differential equations

() ((), ())x t f x t u t �

is the Euler method, which is illustrated in Figure 2(a) :

 () () ()x t h x t hx t� � � (6)

where h is a small step in time (Gt).

This method is quite crude, because the time derivatives ()x t� continuously vary over time, yet
we are assuming they are constant for the ‘small’ step h.

Euler is too simple because :

(i) Accuracy can only be ensured by choosing a ‘small enough’ step size, and thus
imposing a large number of function evaluations on the simulation.

(ii) If h is too large, the solution can become unstable as well as inaccurate, with
progressively larger values of x being predicted.

(iii) The absolute level of accuracy is determined by the model (how rapidly ()x t� varies
and whether it includes ‘sharp’ (switching) nonlinearities, like in the bouncing ball)
so it is hard to guarantee a given level of precision.

Figure 2 : Time schematic for function evaluations under various integration methods

Figure 2(b) shows a better method, the midpoint method or ‘Runge Kutta second order’.
Intuitively, if you find the gradient half way along a step, and use this instead of the gradient at
the start, you’ll get a better estimate of the ‘average’ behaviour over the time interval :

t1 t2 t3

x(t)

t1 t2 t3

x(t) x(t)

4

2

3
1

t1 t2

(c) : RK4 method (a) : Euler method (b) : Midpoint (RK2) method

State estimate Function evaluation

- 9 -

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Section 2b : Numerical Integration of Ordinary
Differential Equations (ODEs)

The simplest method for integrating a set of differential equations

() ((), ())x t f x t u t �

is the Euler method, which is illustrated in Figure 2(a) :

 () () ()x t h x t hx t� � � (6)

where h is a small step in time (Gt).

This method is quite crude, because the time derivatives ()x t� continuously vary over time, yet
we are assuming they are constant for the ‘small’ step h.

Euler is too simple because :

(i) Accuracy can only be ensured by choosing a ‘small enough’ step size, and thus
imposing a large number of function evaluations on the simulation.

(ii) If h is too large, the solution can become unstable as well as inaccurate, with
progressively larger values of x being predicted.

(iii) The absolute level of accuracy is determined by the model (how rapidly ()x t� varies
and whether it includes ‘sharp’ (switching) nonlinearities, like in the bouncing ball)
so it is hard to guarantee a given level of precision.

Figure 2 : Time schematic for function evaluations under various integration methods

Figure 2(b) shows a better method, the midpoint method or ‘Runge Kutta second order’.
Intuitively, if you find the gradient half way along a step, and use this instead of the gradient at
the start, you’ll get a better estimate of the ‘average’ behaviour over the time interval :

t1 t2 t3

x(t)

t1 t2 t3

x(t) x(t)

4

2

3
1

t1 t2

(c) : RK4 method (a) : Euler method (b) : Midpoint (RK2) method

State estimate Function evaluation

- 9 -

What is the consequence of reducing the
size of h on the calculation?

Numerical Integration of ODE’s
Midpoint method

• The midpoint method
evaluates 𝑥(𝑡 + ℎ) using
the gradient at 𝑡 + ℎ/2
• Errors 𝒪(ℎ&)

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Section 2b : Numerical Integration of Ordinary
Differential Equations (ODEs)

The simplest method for integrating a set of differential equations

() ((), ())x t f x t u t �

is the Euler method, which is illustrated in Figure 2(a) :

 () () ()x t h x t hx t� � � (6)

where h is a small step in time (Gt).

This method is quite crude, because the time derivatives ()x t� continuously vary over time, yet
we are assuming they are constant for the ‘small’ step h.

Euler is too simple because :

(i) Accuracy can only be ensured by choosing a ‘small enough’ step size, and thus
imposing a large number of function evaluations on the simulation.

(ii) If h is too large, the solution can become unstable as well as inaccurate, with
progressively larger values of x being predicted.

(iii) The absolute level of accuracy is determined by the model (how rapidly ()x t� varies
and whether it includes ‘sharp’ (switching) nonlinearities, like in the bouncing ball)
so it is hard to guarantee a given level of precision.

Figure 2 : Time schematic for function evaluations under various integration methods

Figure 2(b) shows a better method, the midpoint method or ‘Runge Kutta second order’.
Intuitively, if you find the gradient half way along a step, and use this instead of the gradient at
the start, you’ll get a better estimate of the ‘average’ behaviour over the time interval :

t1 t2 t3

x(t)

t1 t2 t3

x(t) x(t)

4

2

3
1

t1 t2

(c) : RK4 method (a) : Euler method (b) : Midpoint (RK2) method

State estimate Function evaluation

- 9 -

Vehicle Dynamics and Simulation 2 Modelling and Simulation

1

2 1
3

2

((), ())
(() 2, (2))

() () ()

k hf x t u t
k hf x t k u t h

x t h x t k h

 � �

� � �2

 (7)

The ‘O(h3)’ bit means ‘errors of order h3’. Essentially, the Euler method uses one function
(((), ())f x t u t) evaluation and is accurate to order h2, the midpoint method uses two (hence
second order), and is accurate to O(h3) etc.

By far the most often used is the fourth order Runge Kutta formula (RK4), which is illustrate
in figure 2(c) and is calculated as :

1

2 1

3 2

4 3

51 2 3 4

((), ())
(() 2, (2))
(() 2, (2))
(() , ())

() () (
6 3 3 6

k hf x t u t
k hf x t k u t h
k hf x t k u t h
k hf x t k u t h

k k k k)x t h x t h

 � �
 � �
 � �

� � � � � �2

 (8)

This method involves four function evaluations; one at the start, two in the centre and one at
the end of the step, and it uses a weighted aggregate to provide the best estimate of the states at
t+h.

The Runge Kutta methods are better than Euler, because they include ‘autocorrection’ within a
single time step, hence one RK4 step of length h will be more accurate that four Euler steps of
length h/4.

The graph on the right
illustrates this. It shows a
section of simulations of the
suspension model, settling
from an initial deflection o
body.

f the

The ‘true states’ were
calculated using RK4 with a
step length of 0.001. RK4,
midpoint and euler methods
were then tested with equal
numbers of function
evaluations (RK4 h=0.1,
Midpoint h=0.05 and Euler
h=0.025)

Figure 3 : A ‘fair’ comparison between integration methods

How do we know what step length we need to achieve a particular level of accuracy though?
In general, it isn’t appropriate to fix h, and the plot below shows why. The bouncing ball
model has a ‘sharp’ nonlinearity – the model changes suddenly when the ball contacts the
floor. In the figure, Simulink has been used to give an ‘accurate’ simulation of the motion of

- 10 -

Value of
function at

h/2

Value of input at
h/2

Numerical Integration of ODE’s
Runge-Kutta 4th order

• RK4 evaluates 𝑥(𝑡 + ℎ) using the
gradient at t, 𝑡 + ℎ and two
estimates at 𝑡 + ℎ/2
• 𝒪(ℎ')
• RK4 is the most used fixed step

solver

Vehicle Dynamics and Simulation 2 Modelling and Simulation

Section 2b : Numerical Integration of Ordinary
Differential Equations (ODEs)

The simplest method for integrating a set of differential equations

() ((), ())x t f x t u t �

is the Euler method, which is illustrated in Figure 2(a) :

 () () ()x t h x t hx t� � � (6)

where h is a small step in time (Gt).

This method is quite crude, because the time derivatives ()x t� continuously vary over time, yet
we are assuming they are constant for the ‘small’ step h.

Euler is too simple because :

(i) Accuracy can only be ensured by choosing a ‘small enough’ step size, and thus
imposing a large number of function evaluations on the simulation.

(ii) If h is too large, the solution can become unstable as well as inaccurate, with
progressively larger values of x being predicted.

(iii) The absolute level of accuracy is determined by the model (how rapidly ()x t� varies
and whether it includes ‘sharp’ (switching) nonlinearities, like in the bouncing ball)
so it is hard to guarantee a given level of precision.

Figure 2 : Time schematic for function evaluations under various integration methods

Figure 2(b) shows a better method, the midpoint method or ‘Runge Kutta second order’.
Intuitively, if you find the gradient half way along a step, and use this instead of the gradient at
the start, you’ll get a better estimate of the ‘average’ behaviour over the time interval :

t1 t2 t3

x(t)

t1 t2 t3

x(t) x(t)

4

2

3
1

t1 t2

(c) : RK4 method (a) : Euler method (b) : Midpoint (RK2) method

State estimate Function evaluation

- 9 -

Vehicle Dynamics and Simulation 2 Modelling and Simulation

1

2 1
3

2

((), ())
(() 2, (2))

() () ()

k hf x t u t
k hf x t k u t h

x t h x t k h

 � �

� � �2

 (7)

The ‘O(h3)’ bit means ‘errors of order h3’. Essentially, the Euler method uses one function
(((), ())f x t u t) evaluation and is accurate to order h2, the midpoint method uses two (hence
second order), and is accurate to O(h3) etc.

By far the most often used is the fourth order Runge Kutta formula (RK4), which is illustrate
in figure 2(c) and is calculated as :

1

2 1

3 2

4 3

51 2 3 4

((), ())
(() 2, (2))
(() 2, (2))
(() , ())

() () (
6 3 3 6

k hf x t u t
k hf x t k u t h
k hf x t k u t h
k hf x t k u t h

k k k k)x t h x t h

 � �
 � �
 � �

� � � � � �2

 (8)

This method involves four function evaluations; one at the start, two in the centre and one at
the end of the step, and it uses a weighted aggregate to provide the best estimate of the states at
t+h.

The Runge Kutta methods are better than Euler, because they include ‘autocorrection’ within a
single time step, hence one RK4 step of length h will be more accurate that four Euler steps of
length h/4.

The graph on the right
illustrates this. It shows a
section of simulations of the
suspension model, settling
from an initial deflection o
body.

f the

The ‘true states’ were
calculated using RK4 with a
step length of 0.001. RK4,
midpoint and euler methods
were then tested with equal
numbers of function
evaluations (RK4 h=0.1,
Midpoint h=0.05 and Euler
h=0.025)

Figure 3 : A ‘fair’ comparison between integration methods

How do we know what step length we need to achieve a particular level of accuracy though?
In general, it isn’t appropriate to fix h, and the plot below shows why. The bouncing ball
model has a ‘sharp’ nonlinearity – the model changes suddenly when the ball contacts the
floor. In the figure, Simulink has been used to give an ‘accurate’ simulation of the motion of

- 10 -

Numerical Integration of ODE’s

Vehicle Dynamics and Simulation 2 Modelling and Simulation

1

2 1
3

2

((), ())
(() 2, (2))

() () ()

k hf x t u t
k hf x t k u t h

x t h x t k h

 � �

� � �2

 (7)

The ‘O(h3)’ bit means ‘errors of order h3’. Essentially, the Euler method uses one function
(((), ())f x t u t) evaluation and is accurate to order h2, the midpoint method uses two (hence
second order), and is accurate to O(h3) etc.

By far the most often used is the fourth order Runge Kutta formula (RK4), which is illustrate
in figure 2(c) and is calculated as :

1

2 1

3 2

4 3

51 2 3 4

((), ())
(() 2, (2))
(() 2, (2))
(() , ())

() () (
6 3 3 6

k hf x t u t
k hf x t k u t h
k hf x t k u t h
k hf x t k u t h

k k k k)x t h x t h

 � �
 � �
 � �

� � � � � �2

 (8)

This method involves four function evaluations; one at the start, two in the centre and one at
the end of the step, and it uses a weighted aggregate to provide the best estimate of the states at
t+h.

The Runge Kutta methods are better than Euler, because they include ‘autocorrection’ within a
single time step, hence one RK4 step of length h will be more accurate that four Euler steps of
length h/4.

The graph on the right
illustrates this. It shows a
section of simulations of the
suspension model, settling
from an initial deflection o
body.

f the

The ‘true states’ were
calculated using RK4 with a
step length of 0.001. RK4,
midpoint and euler methods
were then tested with equal
numbers of function
evaluations (RK4 h=0.1,
Midpoint h=0.05 and Euler
h=0.025)

Figure 3 : A ‘fair’ comparison between integration methods

How do we know what step length we need to achieve a particular level of accuracy though?
In general, it isn’t appropriate to fix h, and the plot below shows why. The bouncing ball
model has a ‘sharp’ nonlinearity – the model changes suddenly when the ball contacts the
floor. In the figure, Simulink has been used to give an ‘accurate’ simulation of the motion of

- 10 -

• Compare the results on the right
for the three different integration
algorithms.

In what circumstance would one opt for a
lower accuracy method?

Numerical Integration of ODE’s

• Fixed and variable step
‘solvers’ are the two main
categories.
• Variable step solvers change

the step size during the
solution.
• Example: bouncing ball. It is

not always obvious what the
solution is going to look like.
• Fixed step solvers are required

for real time simulation.

Vehicle Dynamics and Simulation 2 Modelling and Simulation

the ball after it is released from rest at a height of one metre. The top plot shows vertical
height (m) against time, the bottom shows speed (m/s). One dot is given per timestep taken –
note that the step length is significantly shortened during the time when the model is switching
between contact and non-contact conditions. The other traces are given by fixed step-length
RK4 simulations.

For RK4, h=0.1, the time step between function evaluations is too long – the integrator models
the ball as in freefall ‘just before’ it hits the ground, then at the next function evaluation the
ball has ‘fallen through the floor’, so immediately has a very high spring force applied – this
explains the subsequent motion, where the ball flies off into the air at great speed (this is
slightly unrealistic behaviour). I chose the second case, h=0.03 because for most of the
simulation this is the step length the Simulink integrator uses. Similar problems occur again;
although it’s not as severe, clearly this model is incorrect, as again the simulation shows the
ball gaining energy.

Figure 4 : The ball bounce model uses varying step-length to guarantee accuracy.

It is clear from this example that, however the model is structured, it is essential we have
control over the accuracy we are getting. This means integrators have to include an algorithm
which automatically adapts the step lengths taken.

Adaptive step size control
“A good ODE integrator should exert some adaptive control over its own progress, making
frequent changes in its stepsize. Usually the purpose of this adaptive stepsize control is to
achieve some predetermined accuracy in the solution with minimum computational effort.
Many small steps should tiptoe through treacherous terrain, while a few great strides should
speed through smooth uninteresting countryside. The resulting gains in efficiency are not

- 11 -

